Convex Hexagonal Systems and Their Topological Indices

نویسندگان

  • Roberto Cruz
  • Ivan Gutman
  • Juan Rada
چکیده

Convex hexagonal systems (CHS) i. e., hexagonal systems with no bay regions are studied. Among CHS with a fixed number of hexagons, the species with minimal/maximal number of inlets have minimal/maximal or maximal/minimal values for a variety of vertex–degree-based topological indices. These extremal CHS are characterized. 1 Convex hexagonal systems In this paper we study a special class of hexagonal systems [1] in which there are no bay regions. These will be referred to as convex hexagonal systems and will be abbreviated by CHS. Their general form is depicted in Fig. 1. Corresponding author. Member of Centro Interdisciplinario de Lógica y Álgebra, Universidad de Los Andes, Venezuela. MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 68 (2012) 97-108

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

M-FUZZIFYING TOPOLOGICAL CONVEX SPACES

The main purpose of this paper is to introduce the compatibility of $M$-fuzzifying topologies and $M$-fuzzifying convexities, define an $M$-fuzzifying topological convex space, and give a method to generate an $M$-fuzzifying topological convex space. Some characterizations of $M$-fuzzifying topological convex spaces are presented. Finally, the notion of $M$-fuzzifying weak topologies is obtaine...

متن کامل

Second and Third Extremals of Catacondensed Hexagonal Systems with Respect to the PI Index

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects certain structural features of organic molecules. The PI index of a graph G is the sum of all edges uv of G of the number of edges which are not equidistant from the vertices u and v. In this paper we obtain the second and third extremals of catacondensed hexagonal systems with respect to the PI index.

متن کامل

Topological number for locally convex topological spaces with continuous semi-norms

In this paper we introduce the concept of topological number for locally convex topological spaces and prove some of its properties. It gives some criterions to study locally convex topological spaces in a discrete approach.

متن کامل

Fuzzy Topology Generated by Fuzzy Norm

In the current paper, consider the fuzzy normed linear space $(X,N)$ which is defined by Bag and Samanta. First, we construct a new fuzzy topology on this space and show that these spaces are Hausdorff locally convex fuzzy topological vector space. Some necessary and sufficient conditions are established to illustrate that the presented fuzzy topology is equivalent to two previously studied fuz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012